
1 Stabilité des équations différentielles

Pour des équations de la forme

ẍ = f(x) ou ẋ = f(x)

Propriété 1 : Positions d’équilibre

Une position d’équilibre est telle que ẋ = 0 et ẍ = 0. C’est donc un point tel que :

f(xeq) = 0

Un point d’équilibre est stable si et seulement si on y revient naturellement.

Propriété 2 : Stabilité

xeq est une position d’équilibre stable si et seulement si f est décroissante au voisinage
de xeq

2 Comportement des sytèmes physiques au voisinage d’une position
d’équilibre

DLs usuels :

Fonction DL à l’ordre 1 en 0
ex 1 + x

ln(1 + x) x

(1 + x)α 1 + αx

cos(x) 1

sin(x) x

Et à l’ordre 2 : cos(x) =
x≪1

1− x2

2 .

Méthode 1 : Calcul des DLs adimensionnés au voisinage de 0

On utilise les DLs usuels pour obtenir une somme de produits de fonctions linéarisées.
Les DLs se composent, se multiplient et s’additionnent naturellement. Puisque l’on fait
une linéarisation, on néglige tous les termes avec des puissances de x plus grandes que
1.

Méthode 2 : Méthode de calcul des DLs dimensionnés au voisinage d’un point quelconque

On fabrique un paramètre adimensionné x0 ≪ 1. On se ramène alors au cas des DLs
adimensionnés au voisinage de 0.
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Méthode 3 : Résoudre une équation différentielle linéaire à second membre constant

— Trouver la solution particulière xp, c’est-à-dire la solution de la forme du membre
de droite, c’est-à-dire constante. On résout donc pour ẍ = 0.

— Trouver la solution xh de l’équation homogène associée, c’est-à-dire celle où on ne
garde que les termes en x.

À la fin, x = xh + xp.

— Finalement, on trouve les constantes en utilisant les conditions initiales sur x(t = 0)
et ẋ(t = 0).

Propriété 3 : Solutions de l’équation différentielle ẍ± ω2x = 0

ẍ− ω2x = 0 x(t) = Aeωt +Be−ωt = A′ cosh(ωt) +B′ sinh(ωt)
ẍ+ ω2x = 0 x(t) = A cos(ωt) +B sin(ωt) = A′ cos(ωt+ ϕ)

ω est la pulsation propre du système. La fréquence d’oscillation vaut f =
ω

2π
et la période

T = 2π
ω .

cosh(x) =
ex + e−x

2
et sinh(x) =

ex − e−x

2
. cosh′(x) = sinh(x) et sinh′(x) = cosh(x). cosh est paire,

sinh est impaire, donc utiles quand les problèmes présentent des symétries. cosh2(x)−sinh2(x) =
1.

Propriété 4 : Force de rappel d’un ressort

Un ressort exerce une force F⃗ en fonction de la longueur l :

F⃗ = −k(l − l0)u⃗l (1)

Avec u⃗l un vecteur unitaire (de norme 1) parallèle au ressort et orienté dans le sens
d’augmentation de la longueur l. k est appelée la constante de raideur du ressort et l0
est appelée la longueur à vide.

3 Énergie et oscillateur harmonique

Définition 1 : Énergie potentielle

Ep = −
x�
F (x)dx (2)

F (x) = −dEp

dx
(3)

Propriété 5 : Sens de la force

La force pointe dans la direction de diminution de l’énergie potentielle
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Epp = mgz

Epel =
1

2
k(l − l0)

2

Méthode 4 : Équations différentielles quadratiques

Si on a une équation différentielle de la forme

ẋ2 + V (x) = cste (4)

Que l’on sait difficilement résoudre, il faut penser à dériver. C’est le passage entre le
TEM et le PFD.

Propriété 6 : Équilibre et énergie

Un point d’équilibre est un extremum local de l’énergie potentielle.

Propriété 7 : Équilibre stable et énergie potentielle

Un point d’équilibre stable est un minimum local de l’énergie potentielle.

Propriété 8 : Équilibre instable et énergie potentielle

Un point d’équilibre instable est un maximum local de l’énergie potentielle.

Propriété 9 : Stabilité et énergie potentielle

Un point d’équilibre est stable si et seulement si d2Ep

dx2

∣∣∣
x=xeq

⩾ 0.

4 Aller plus loin que l’oscillateur harmonique

4.1 Oscillateurs couplés

2 modes propres :

Mode symétrique : position de l’oscillateur 1 = position de l’oscillateur 2, pulsation ω0 des
oscillateurs découplés.

Mode antisymétrique : postion de l’oscillateur 2 = -position de l’oscillateur 1, pulsation
ω1 > ω0.

Faible couplage, battements : Si l’oscillateur de couplage est de pulsation propre négligeable
devant la pulsation des oscillateurs découplés, on a des battements de pulsation ω1 − ω0, et
de pulsation de la porteuse ω0.
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4.2 Oscillateur harmonique amorti

Définition 2 : Forme canonique

ẍ+
ω0

Q
ẋ+ ω2

0x = 0

Q est le facteur de qualité. Plus il est grand, plus on est proche de l’oscillateur harmo-
nique, moins l’amortissement est fort.

Régime apériodique, Q ⩽ 1/2

Régime pseudo-périodique Q > 1/2

Ω < ω0, d’autant plus proche de ω0 que Q est grand.

Q ≈ nombre d’oscillations visibles.

5 Systèmes d’équations différentielles linéaires

Méthode 5 : Systèmes d’équations différentielles linéaires à couplage symétrique

Dans le cas d’un système d’équations différentielles à couplage symétrique :
d2f

dx2
=af+bg

d2g

dx2
=bf+ag

Poser S = f + g et D = f − g. Les équations obtenues sur S et D sont alors découplées.
Cette méthode fonctionne aussi si le système est d’ordre 1. La présence de constantes
dans les équations ne doit pas changer la méthode, cela impliquera simplement des
constantes dans les équations différentielles découplées, qui peuvent être traitées
comme n’importe quelle équation avec second membre.

Méthode 6 : Systèmes d’équations différentielles linéaires à couplage anti-symétrique

Un système à couplage antisymétrique est de la forme suivante :
d2f

dx2
= bg

d2g

dx2
=−bf

On pose alors u = f + ig. On obtient une équation différentielle sur u que l’on peut
résoudre avec les méthodes vues plus haut. Cette méthode marche aussi pour les
systèmes d’ordre 1.
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